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Recent developments in the field d robust multivarlable control have merged the theories of Hoe Ind H 2 ¢_atroL

This mixed H2/Hoo _ompemmtor formu]alian allows design for nomhll _I by _2 norm mhlimtzalion

whne guaranteeing robuststability to umtrueUm_ maceminttes by coustrsdningthe Ho, norm. A _ dimculty
associated with mixed H_Ho. compensation is compensatorsynthesis. A homotopy algorithm is pnsented for
synthesis of k_ O_e mixed H_oo I_ NI_ i"e_tS are presem_ br i _ _ fl_bb

structure to evaluate the _dm,_ of the _.

Introduction

ODERN control theory has revolutionized conlzol system
design, with//2 and Hoomethods gaining widespread recog-

nition and appfication in controller synthesis for single-input/single-
output (SISO) and multi-input/multi-output (MIMO) problems.
Early work in multivariable control synthesis utifized a quadratic
cost functional to minimize the 2 norm of a system response to white
noise inputs. Although the/'/2 procedure is well suited to many sys-
tems that specify performance in terms of rms quantifies such as
minimizing fine-of-sight errors or control energy, it is well known
that stability and performance cannot be guaranteed in the presence
of model uncertainties. Robustness is addressed in H_ control the-
ory, which guarantees stability and performance (when defined by
an oo-norm measure) in the presence of unstructured uncertainty
models, albeit often resulting in overly conservative designs. A sig-
nificant disadvantage of these modem control techniques is that the
resdting compensator is the same order as the generalized plant,
which is often larger than the original plant due to the inclusion of
frequency dependent weights to achieve the desired performance
and robustness characteristics.

The consequential large controtler order can be indirectly allevi-
ated by reducing the order of the controller or alternatively by re-
ducing the order of the design plant Ineither case, indirect methods
are suboptimal in performance and do not guarantee closed-loop
stability. However, direct methods may be employed that impose
constraints on controller order or architecture in the optimization
procedure and, hence, provide stability and performance guarantees.
In an optimization-based synthesis procedure, necessary conditions
are formulated for the constrained closed-loop system that ensure
internal stability. The optimal projection approachI is an/'/2 proce-
dure whereby order constraints are imposed on the controller and
the necessary conditions for minimizing a quadratic cost functional
with respect to the fixed-order controller are derived. The resulting
necessary conditions consist of two modified Riccati equations and
two modified Lyapunov equations coupled by an oblique projection
matrix. However, solution of the necessary conditions for realistic
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large-order systems is adifficult task. Homotopy methods have been
employed to solve the optimal projection equations. 2

As a means of providing robustness and performance, the mixed
H,/H_ methodology has been developed. Much work has been
done with variations of the mixed H2/Hco problem_ (For a sum-
mary, see Ref. 3.) The earliest refereed work was done by Bemstein
andHaddad,4who extended the optimal projection approachtolin-
ear quadratic Gaussian (LQG) control with an H,, norm constraint.
Their formulation minimized an overbound on the//2 norm from a
disturbance input to one output while satisfying an H_ norm over-
bound from the same disturbance input to a second output. The
difficulty with this approach is the potential conservatism re.suiting
from minimizing an overbound on the/'/2 norm. The fLrstattempt
at solving the general mixed H2/H_ problem was by Rotea and
Khargonekar, s who allowed independent inputs and outputs for the
two transfer functions and minimized the actual /'/2 norm based
on full state feedback. Ridgely and Walkerz extended the formula-
tion to output feedback including the fixed-order case with either
regular or singular Hoo constraints, and Canfield et at.6 provided a
numerical solution. Another approach to the general mixed 1"12/Hoo
problem was developed by Sweriduk and Calise, _who used a dif-
ferential games formulation to obtain fixed-order controllers. A nu-
merical solution of this formulation using homotopy was developed
by Whortonet al.s an extension of which is the subject of this paper.
Davis et al.9also recently developed an algorithm for mixed H2/Hoo
design.

Ridgely and Walker3 showed the mixed H2/Hez to be a strictly
convex optimization problem witha unique solution when thecon-
troller is of the order equal to or larger than the underlying /'/2
problem. The solution is shown to lie on the boundary of the in-
finity norm constraint when active (for y < _, where _ is the Hoo
norm when the optimal H2 controller is used) and is just the /']2

controller when y >_ _. For controllers with order less than the
underlying/'/2 problem, the possibility of local minima in the un-
constrained/'/2 problem (optimal projection) exists and the solution
of the mixed 1"1,/H= problem may or may not lie on the boundary
of the H_ norm constraint. As will be shown in the next section,
Sweriduk and Calise 7begin with the f_at-order H® cost functional
and append the fixed-order H2 cost functional. Reference 3 takes the
converse approach by appending the Hoonorm constraint to the//2
cost functional. As aconsequence, the formulation in Ref. 3 can haw
die both regular and singular H_ constraints and can be specialized
to the/'/2 problem. Conversely, the Ref. 7 formulation can handle
both regular and singular//2 constraints and can be specialized to
the Hooproblem. However, the ability to handle singularconstraints
on either cost exists as long as one of the cost constraints is regular.
Whereas the Ref. 7 formulation assumes that the plant dynamics
(A matrix) of the two transfer functions are the same, Pet'. 3 al-
lows different dynamics in the two separate underlying H_ and H2
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problems. Using the canonical compensator with a static gain output

formulation presented in following section, the Ref. 7 formulation
requires the simultaneous solution of five coupled nonlinear matrix

equations. Reference 3 presents the necessary conditions in the form

of seven coupled, nonlinear matrix equations.

The objective is to build on the results of Ref. 7 by presenting a
homotopy algorithm that solves the mixed H:/H_ fixed-order com-

pensator synthesis problem. Fixed-order//2 and Hoo controllers are

obtained as special cases of the algorithm. The paper is organized
as follows. First, a formulation of the problem with the compen-

sator in controller canonical form is presented and the necessary

conditions for the fixed-order//2 controller are developed. These
results are then extended to the fixed-order Ho= and mixed Hz/Ho_

controller design using the differential game results of Ref. 7. (The
approach and algorithms of this paper also follow Refs. 10 and 11
for H2 controller synthesis.) Second, homotopy methods are intro-
duced and a homotopy algorithm is developed to synthesize mixed
H2/H_ compensators. Finally, numerical results are presented for
evaluation of these homotopy algorithms followed by a discussion

and concluding remarks.

Problem Formulation

The generalized plant of a standard control problem is given by

J¢= Ax + Biw + B2u (1)

Z = CIx + DI2 u (2)

y = C2x + D2Iw + D22u (3)

wherex E R" is the state vector, w ¢ R"=' is the disturbance vector,

u E R "u is the control vector, z E R "z is the performance vector,
andy E R"Y is the measurement vector. The following is assumed.

1) (A, B_, Ct) is stabilizable and detectable.
2) (A, B v, C v) is stabilizable and detectable.
3) Di2 has full column rank.

4) D21 has full row rank.

A general compensator for this system is

Xc = A_xc + B_y (4)

u= c,.x_ (5)

where xc E R "_ is the state vector of the controller the dimension

of which can be specified. Closing the loop using negative feedback

yields the closed-loop system dynamics

x= _ + _w (6)

z = C_ (7)

where

Ex]i = (8)
Xc

BcC2 Ac -- BcD22Cc (9)

BED21 (10)

= [el -DI2Cc] (I 1)

The set of all internally stabilizing compensators is defined as

Sc = {(At, Be, C¢): ,/_ is asymptotically stable} (12)

For an//2 problem, the objective is to minimize the/-/2 norm on

the closed-loop transfer function from disturbance inputs to perfor-

mance outputs

T=w = C'(s/ - A)-' B (13)

where the disturbances are confined to the set of signals with

bounded power and fixed spectra. If the disturbance is modeled

as white noise, the objective is

min l J(A_, B_, Cc) = li_.m E{z(t)rz(t)} } (14)
Sc

It can be shown that the cost can be expressed as

J(Ac, B_, Co) = tr{aB/_ r } = tr{pCrC} (15)

where

,/,p + p,_r +/_r = 0 (16)

/_rQ + Q,_ + _r_ = 0 (17)

P is the controllability grammian of (,4,/_), and Q is the observabil-
ity grammian of (C, A). An equivalent cost functional also arises
for the case of impulsive inputs.

To obtain the/-/2 optimal compensator, the Lagrangian is defined
as

L(Q, L, A¢, Be, Co) = tr{QBB r + (_rQ + Q,_ + _r_.)L }

(18)

where L is a symmetric matrix of multipliers. Matrix gradients are
taken to determine the first-order necessary conditions,

3£ a£ 0£

O-Q = O, a'-L = O, 0 A--"_= 0
(19)

a£ a£
--=o, --=o
aB_ ac_

Hence, computing an//2 optimal controller of fixed order nc < n

for the general controller structure given in Eqs. (4) and (5) requires
the simultaneous solution of five coupled equations. This is not only

computationally expensive but is also further complicated by the fact

that the problem is overparametrized with such a compensator.
A controller form architecture 12 is imposed on the compensator

dynamics. This minimal realization avoids the problem of over-

parametrization and is a canonicalform under mild conditions. 13
The internal structure of the compensator is prespecified by assign-

ing a set of feedback invariant indices v;. In controller canonical

form the compensator is defined as

xc = P°xc + N°u_ -- N°Y (20)

Uc = -Pxc (21)

u = -Hxc (22)

where x_ E R nc and u_ ¢ R'Y. P and H are free-parameter matrices,

and po and N Oare fixed matrices of zeros and ones determined by

the choice of controllability indices. Similarly, a compensator in ob-
server canonical form can be constructed. Only the controller canon-

ical form is employed, which imposes the lower bound nc >_ ny on

the order of the compensator.
Let

["1fi = (23)
Uc

The augmented system may be expressed as

= w+ No fix _NOC2 po y¢ + _NOD21 _NOD22

(24)

= Ai+/_w +/_2_

Z = [CI O]_+[DI2

= C1_ +/Sn'_

o]_

(25)
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= [0 I]_ = C2£ (26)

fi=-[Hp],f-G, (27)

Equations (24-27) define a static gain output feedback problem
where the compensator is represented by a minimal number of free

parameters in the design matrix G. The closed-loop system is given
by

= (A - B2GC2)e + _w
(28)

= ii+_w

z = (Cl -- bl2G¢_2)_ = Ca_ (29)

Minimizing the/'/2 norm of Tz. = C(sl - _)-l_ utilizes the same
Lagrangian as given in Eq. (18), but now £ is only a function of
three parameter matrices, i.e., £(Q, L, G). Thus, only three first-
order necessary conditions result:

8£ ,4L + LA r + _r 0 (30)
aQ

a£ = _rQ + Q_ + _?r_ = 0 (31)
0L

a_. = 2(br b_G_ " _ br ¢ ' _ _ Q)L_ r = 0 (32)
aG

Controller canonical forms can also be used to solve the H=

problem. The objective is now to minimize the oo norm of the

transfer function from disturbance inputs w to performance outputs
z given in Eq. (13). In this case the necessary conditions for an H_

suboptimal fixed-order compensator gain G are 7

a__E__L= (_ + r-_#_Ta®)L
aQ_o

+ L(,_ + r-2BBr Q=) r +/_r -- 0 (33)

a£ _rQ= + Q=_ + _r_ + r-2Q=_rQ® = 0 (34)
aL

a_ = 2(br_&_o¢_- b_¢_- _e_)L_ = 0 (35)
aG

where

+ _r_ + F-2Q_TQ_)L } (36)

As in the/-/2 problem, three coupled equations have to be solved
to obtain a fixed-order compensator that satisfies the constraint
IIT_.lloo < Y.

Fixed-order Hoo design has also been extended to fixed-order #
synthesis.t4, t_ Because Ho_ controller design is a subproblem when
designing for robust performance with structured uncertainty, the
fixed-order technique just introduced has the potential to constrain

the order of the controller that is normally subject to significant
increases in the I_-synthesis procedure.

The mixed H2/Hoo problem can be approached in a similar

fashion. 7 In this case, the generalized plant has additional inputs
and outputs w e and zv, respectively, which define the/'/2 perfor-
mance criterion. The plant dynamics are illustrated in Fig. 1. The

inputs w and outputs z are used to define the H_ performance crite-
rion. Using the controller canonical form for the compensator, the
augmented system for the mixed problem is

x = ,_ + B_w +/_ewp +/_2 a (37)

Z_ = C'_£ +/3_vfi (38)

z = C_£"+/)_2fi (39)

.Y = C_ (40)
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W
P

W

B

= --G._ (41)

A B B B

C 0 0 D
p Ip

C 0 0 D
1 I_

C D D D

Z

P

g

Y

Hg. 1

AI.]C 0
¢

H2/_ problem.

where

Bp

(42)

(43)

(44)

_ = [c_ 0]

b_p _[D_ 0]

The otherexpressions are the same as in Eqs. (24-27). Consequently,
the closed-loop system is given by

= (_i- _o_)_ + _.w. + _,w
(45)

= _ + _pw_ + _w

Z = (C_ - b_G(_2)£" = C._ (47)

TO formulate the performance index of the mixed problem, the

Lagrangian for the //2 problem in Eq. (18) is adjoined to the

Lagrangian for the H_ problem in Eq. (36) by a scalar weight ),:

£ = tE{Qo_ _r + (ArQoo + QooA

+ _ + _-_O_#_a_)z + _x_,_,

+ (_x + x_ T+ _,_)L.} (43)
The weight X on the H2 norm allows a tradeoff between performance

(//2 norm) and robustness (H_ norm). The first-order necessary
conditions are

a£

ae_ = (_ + r-_e_)L

+ L(_i + y-2BBTQoo) r + j_T = 0 (49)

a£ = _T Q_ + Q_ + _r_. + r-2Q_T Q_ = o (50)
aL

0£ AT Lp + LpA + _.CTCp 0
ax

(51)

a__£._= _ix + XA r + BI,B r = 0 (52)
aLe

aG

+ _r_r,_,,oGxcI - x_r,c, xc_ - _2L,XC_] = o
(53)

Promisingresultshave beenobtainedforthe H_ and themixed
problem where a conjugategradientmethod was used in the
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computation. 7 A disadvantage of this method is that convergence
slows down near the optimum. Also, an initial starting guess for the

compensator gain G has to be provided that stabilizes the closed-
loop system. In this paper, a homotopy method is used to continu-

ously deform the solution of a simple problem formulation to the
solution of the desired problem formulation.

Homotopy Methods

Homotopy methods offer an attractive alternative to more stan-
dard approaches of optimal controller synthesis such as sequential

and conjugate gradient methods. The basic philosophy of homotopy

methods is to deform a problem that is relatively easily solved into

the problem for which a solution is desired.
Homotopy (or continuation) methods, arising from algebraic and

differential topology, embed a given problem in a parametrized fam-
ily of problems. More specifically, consider sets U and Y E _" and

a mapping F: U --* Y, where solutions of the problem

F(u) = 0 (54)

are desired with u _ U and F(u) _ Y. The homotopy function is

defined by the mapping H: Ux[O, 1] ---* _" such that

H(ut, 1) = F(u) (55)

and there exists a known (or easily calculated) solution uo, such that

H(uo, 0) = 0 (56)

The homotopy function is a continuously differentiable function

given by

H[u(o0, a] = 0, ¥ot E [0, 1] (57)

Thus, the homotopy begins with a simple problem with a known

solution, Eq. (56), which is deformed by continuously varying the
parameter until the solution of the original problem, Eq. (54), is

obtained. 1_ The power of homotopy methods is that minimization

is not strongly dependent on the starting solution but depends on
local, small variations in the solution. Theoretically, these methods

are globally convergent for a wide range of complex optimization

problems, but in actuality, finite wordlength computation often in-

troduces numerical ill-conditioning, resulting in difficulties with

convergence. In light of these numerical limitations, a judicious

choice of the initial problem and the associated initial stabilizing

compensator is necessary for convergence and efficient computa-
tion. However, the ability to select an initial problem with a simple

solution renders homotopy methods more widely applicable than

sequential or gradient-based methods, which have a stringent re-

quirement for an initial stabilizing solution.
Both discrete and continuous methods are used to solve the homo-

topy. Discrete methods simply partition the interval [0, 1] to obtain

a finite chain of problems

H(u,a,) = 0, 0 = do < al < ..- < aN = 1 (58)

Starting with a known solution at a,, the solution for H (u, an + t) is
computed by a local iteration scheme. Continuous methods involve

integration of Davidenko's differential equation, which is obtained

by differentiating Eq. (57) with respect to cx, yielding

du (_H'_-I _H
_ =-\T_-_: -_ (59)

Given u(O)= u0,thisinitialvalueproblem may be numericallyin-

tegratedto obtainthe solutionata = 1 ifthesolutionexistsand is

uniquelydefined.
Researchremainstobe done intheapplicationofhomotopy algo-

rithms.Efficientapplicationof homotopy methods depends on the

initialproblem,thefinalproblem,and thedeformationundertaken.
Given a good initialsolution,thekey toconvergenceistheabilityto

accuratelytrackthesolutioncurve,which isdeterminedby thede-
formationundertaken.The abilitytopredictthesolutionalongthe

homotopy path via Davidenko's differential equation makes con-
tinuous homotopy methods superior to discrete methods. Efficient

computation of the Hessian is the primary issue for practical im-

plementation of continuous homotopy algorithms. In the following
sections, a continuous homotopy algorithm is presented for fixed-
order mixed H2/H_ compensator design. The set of homotopy al-

gorithms for synthesizing fixed-order//2, Ho_, and mixed H2/H_
compensators has been organized into a MATLAB TM toolbox called

fixed-order compensation of uncertain systems (FOCUS).

Homotopy Algorithm
This section describes the algorithm used for implementing the

continuous homotopy. In essence, a mixed discrete and continu-
ous approach is employed where Davidenko's differential equation,

Eq. (59),is integrated along the homotopy path, and at discrete points

along the trajectory, a local optimization is used to remove integra-
tion error. The optimization scheme is a hybrid Newton/conjugate

direction search method developed for this application.17 Local op-

timization at discrete points along the homotopy trajectory allows

a crude integration procedure with large step sizes to be employed
for efficiently tracking the solution curve. This approach follows

closely that of Refs. 10 and 11 and is employed in the following

algorithm.

1) Find initial solution (a = 0).
2) Advance a

al.k _--- {_fO "It" Aa0, k

3) Predict 0
0(0fl.k) = 0(0to) + Aao.kO'(CXo)

where

dO (aH_-t aH
o'(a)= _ =-\-_)

4) Check prediction error

ek(0, or) = [IJo[0(at.k)][I < E

a) if error less than tolerance, continue; b) if not, 0.5Aao.k --_
Aao. t + l; and c) increment k and repeat steps 2--4.

5) Correct with hybrid Newton/conjugate direction method to

compute local minimum.
6) If a = 1, stop. Otherwise, go to step 2.
Various approaches may be taken when selecting the deformation,

but the general procedure applied in this effort is outlined as follows.
1) Synthesize a low-authority/-/2 (full-order) compensator.
2) Reduce the compensator to desired order and transform to

canonical form. 12

3) Set y large enough so that the/-/2 and Hoo compensators are

approximately equivalent.

4) Use homotopy to deform the initial Iow-anthority, reduced-
order/'/2 compensator into a full-authority reduced-order//2 com-
pensator (/-/2 homotopy).

5) Deform the full-authority//2 compensator into a nearly optimal

Ho_ compensator with y approaching its infimum (Hoo homotopy).
6) At discrete values of _., fix y and deform the compensator

into the mixed Hz/H_ compensator by varying _. (mixed H2/Ho,

homotopy).

This procedure was chosen because it has been observed numer-
ically that order reduction techniques tend to work best for low-
authority _ controllers.t°. 18A canonical form is imposed on the

compensator structure to minimize the number of free parameters,
which in some cases can also lead to numerical ill conditioning. A

balancing transformation, which does not affect the controller char-
acteristics, relaxes the strict structure in the po and N Omatrices in

Eq. (20) and improves the conditioning of the problem.
The procedure outlined separates the compensator synthesis into

distinct phases. The initial reduced-order full-authority compensator
is synthesized using the//2 homotopy, which is then deformed into
the reduced-order H_ compensator. During the Hoo phase, the scalar
//2 norm weight _ is fixed (as are the plant matrices) and only the

H:_ norm overbound y is varied. At discrete values, y is fixed and _.

is varied to perform the/-/2 norm minimization. Thus, the procedure
alternates between the Hoo and/-/2 norm minimization.
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During the homotopy, both the predicted and corrected gains are
checked to ensure closed-loop stability. After each correction step,
the cost gradient is checked to verify descent. During the Ho, ho-
motopy, the solvability of the Riccati equation using predicted or
conected gains must also be checked. If any of these conditions
areviolated during correction, the correction step size is scaled and
the condition is checked again. If scaling the correction step size
is ineffective, the prediction step size is decreased and the predic-
tion phase is repeated. This process continues until the homotopy
is completed or until the prediction step size is decreased below a
prespecified tolerance.

The following sections detail the derivations employed in the
homotopy algorithm for mixed H2/H_ design. A complete devel-
opment of the//2, Hoo, and mixed H2/Hoo algorithms is given in
Ref. 8.

MixedH,/tio, Dcvdopmmt
The homotopy function as well as the gradient and Hessian matri-

ces are determined from the first-order necessary conditions for an
optimal mixed H2/Hoo compensator given by Eqs. (49-53). Define
0 to be a vector comprising the free compensator parameters

0 = vec(G) (60)

where G is the output feedback gain matrix defined in Eq. (27). The
gradient of the cost is

(,:)f(O) = _-_ = vec = 0

where 8F./OG is given by Eq. (53).
The homotopy function is defined as

(61)

H<o,.)= 0z:(o,_) ('oz:<o,,,)'_
a"--6--= vec\, _- / =o (62)

Note that £ is now a function of the homotopy parameter a since
the system matrices are now functions of a. The gradient of the
homotopy function is

v[HT(O, Of)] = [VeH T _H T] (63)

Computation of Hessian

The derivative of the N x 1 vector valued homotopy function,
H r (0) = [h_(8), h:(O) ..... hN (O)], with respect to the N param-
eter vector O is the N x N Hessian matrix given by

where

VoH = OH OH OH
802

aoj L 0o_ .I

andusing Eq. (53),

(64)

(65)

8H ( O {2[(_)r2D,2Gez__)T2a,__Q_)Ler

+(_.[)rpD,pGe2-).Drpap- /_rLp)XC2r]}) (66)

The derivatives with respect to 0 are denoted

(,)u) = a(,_.._)
00y

For Oj = gik,

(68)

where

and

on

8_
ro(,£,,G,1

vecL _ j

+(xb5b,,oe,-_b_,c,-_ L,)xc_]})
._T _ _ T _

_c{2[(D ,_D,_OC2+ _#,20._ - _ ,:,

a(.)
(_)= _ (80)

o')o(

OG
G (j)= _ ffi Ei_ (69)

00j

which is a matrix of zeros except for a one in the i/_element.
To obtain expressions for L q), Q-q'),L_ ), and XU), differentiate

Eqs. (49-52) with respect to 0 r to obtain

0 = (A 4" y-2BBrQoo)LU' + L(J)(A + F-2BBT_oo) T

+ [(_.,+ _-_. _og,)L+ L(_"'+ r-_" _))"]
(70)

o = (_ + _,-_' _oo)'Q_' + Q_'(,/+ y-2_Q_)

+ [_(j)T _oo "_ _voA (j) "_ (_r_)(j)] (71)

0 = A-TLp (j) + L(J)A + [AU)TLp + LpA (j) + _.(a;ap) (j)] (72)

o= _xu, + xu)_, + [_u)x +x_,_ + (_._)u)](7_)

Derivatives of the closed-loop matrices are obtained from Eqs.
(45---47)andare given by

A(J)= -B2G(_)C: (74)

(_T)(j) ----(_p_)U) _--0 (75)

(aTe)O)= (aT2 G(J)T DTI2K)I2GC2) + (e_ G(J)T _)[2DI2G_'2) T

- (e,,_:_,eg - (eV,,z_u,e=)' (76)

(a;e,)"'= (- _,,a_,e2)"(e,- _,,_e_)

+(e,- _,:e_)'(-_,,o_,e,) (7.

Computation ofHa

Similarly,thederivativeofthehomotopyfunctionwithrespect
tothehomotopyparameter,istheN x Ivector

OH r
Vc, H r = _ (78)

0a
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Implicit in these equations is the assumption that all system matrices
are fixed with the exception of D_2 and Dtp and the parameters ;,

and y. In general, the homotopy can be performed with any/all
system matrices deformed, but the methodology for mixed Hz/H_

employed is to vary only one parameter at a time.

The derivative terms in the third equality in Eq. (79) depend on

the deformation undertaken in the specified problem, i.e., the initial
and final problem. Suppose that the deformation of the matrix/512

is prescribed to be

Dl2(a) = D12,o(a)+ a[/)12j(")- Dl2.o(Ot)] (81)

where the 0 and f subscriptsindicatethe initialand finalsystem
matrices,respectively.Itfollowsthat

b12= hi2./-bl2.o (82)

The derivativeofotherplantmatricesand theparameters_.and y are

determinedaccordingly.To obtainexpressionsforthederivativesof

L, Q_, Lp, and X withrespecttoa,Eqs.(49-52)aredifferentiated,
resulting in the following:

0 = (:i + ×-_Ta_)t, + L(,i + r-2_hTa_)T

+ (FL + LF r) (83)

0-- (,i+ _-2h_Te_)_Q_+ Q_(,i+y-2_Te_)

_ (2r-3yQ_T a_) (84)

0= :iTLp+L,_+ (),TL,+ L,,_+ _b;_:,

+ _C_,+ _._,__,) (85)

0= ._X+ Jt_T+ (AX+ XAT+ _,#_+& _) (86)

where

(87)

and, from Eqs. (45--47),

A = ,_ - _26_ - _a_2 (88)

_,o = _ e (89)

= _ (90)

= _, -- b,2GC2 -- D,2GC2 (92)

The use of the canonical compensator formulation in the aug-
mented system dynamics simplifies not only the necessary condi-
tions but also the derivative expressions of the system matrices.
From Eqs. (37-40), the augmented matrix derivatives reduce to

_ = -No(Ca./- C2.o) (93)

_t, r B,./- Bp.o
= L -N°(D2p./- D2p,o)J (94)

BI F BI.f- BI,o l
= L-N°(D21./- D2ko).J (95)

,2=[ Bz./- Bz.o 00]- N° (D22. f - D22.o)

_ = [C_.;- Cp.0 0]

(96)

(97)

_ = [C,.: - CLo 0] (98)

_2 = [0 0] (99)

/9_e= [D_p./- D_p.o 0] (I00)

[)_2 = [D_2.f -- DI2.O O] (101)

The presence of the zero subblocks significantly enhances the
computational efficiency of this approach. When implementing the

procedure described at the beginning of this section, the preceding

equations may be further specialized. In the initial /-/2 homotopy
procedure the initial and final plant matrices are the same and the

homotopy is performed only on the measurement and process noise
intensities, D_2 and/)21. Hence A, Bz, (_, and _'2 are identically

zero. For the mixed Hz/H_ homotopy, the H_ and/'/2 homotopies

are performed distinctly, which simplifies the computations signif-

icantly because the plant matrices remain fixed and only y or _. are
varied at one time.

Design Example

To demonstrate the homotopy algorithm applied to optimal con-

troller synthesis, the four disk example originally described in
Ref. 19 and more recently by numerous others t° will be used. The

four disk model used in the example problem was derived from a

laboratory experiment and represents an apparatusdeveloped for
testing of pointing control systems for flexible space structures with

noncollocated sensors and actuators. Four disks are rigidly attached

to a flexible axial shaft with control torque applied to selected disks

and the angular displacement of selected disks measured. The plant

parameters are taken from Ref. 4.

Hz Case
To demonstrate the homotopy algorithm applied to/-/2 controller

synthesis, a direct comparison between the homotopy algorithm of

Ref. 10 called HAt and the FOCUS algorithm (called H2HOM
for the /'/2 case) will be presented first. The main distinction be-

tween the two homotopy algorithms for the//2 case is the compen-
sator architecture. HAt employs a general architecture that may be

restricted to various parametrizations including the controllability
canonical form, which is similar to the controller canonical form

used in H2HOM for this SISO example problem. The HAt code

has been highly optimized for efficient computation with the result

that superfluous computations are not evaluated. The homotopy al-
gorithm of this paper is patterned after the general approach of HAt

and utifizes some of the more efficient computational aspects of the
HAO code.

The control design philosophy for this example is to scale the

nominal control weight and the nominal sensor noise intensity by the

parameter q. As q is reduced, the control authority is increased. For
comparison with the published results in Ref. 10, a full- (eighth-)
order compensator was synthesized. Although the results can be

directly obtainedfrom the LQG Riccati equations, the full-order

compensator was chosen to tax the H2HOM algorithm, which must
optimize over a greater number of parameters with increasing com-

peusator order.
Table 1 shows a comparison of the results from the H2HOM and

HAt algorithms for the full-order compensator along with results
from the I-I2HOM algorithm for sixth- and second-order compen-

sators. All pertinent parameters as well as logic for step-size scal-
ing and the computation of the prediction and correction errors are

identical in both algorithms, which are implemented in MATLAB

on a 486 66-MHz computer. Whereas the HAt code required a

minimum step size of 1.907e-7, the 1-12HOM solution was much

better conditioned and required a minimum step size of 0.025. As
a consequence of the smaller step sizes with HAt, 2504 Hessian

computations were required, as opposed to only 63 Hessian com-

putations with H2HOM. The HAt code has been tuned extensively
for efficient computation, as is reflected in the small number of

floating point operations per second (flops) required. In spite of the
significantly smaller number of flops with HAt, the H2HOM code

required significantly less clock time for convergence to the same

final compensator. (The results generated by the authors using the
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Table I Comparison of H2HOM and HAO algorithms

Algorithm HAO H2HOM H2HOM H2HOM

Compensator order 8 8 6 2
Number of Hessian 2504 63 60 30

computations
Min. step size 1.907e-7 0.025 0.05 0.1
Max.stepsize 0.I 0.I 0.I 0.2
Max. number of correction 9 7 8 5

iterations
IVlflops 287 936 455 37
Tune, s 5104 883 488 73

Table 2 C.mnparisondFOCUSandRef.4remlts

3/ IlYzwIlac.eH [IY:_oII_.F IlY_wp112.BH IITzpwpll2._"

2.0 1.18 _ 0.382
1.5 1.06 -- 0.389
1.0 0.855 0.947 0.410 0.398
0.9 0.797 0.889 0.420 0.403
0.8 0.732 0.776 0.432 0.421
0.7 0.661 0.668 0.451 0.438
0.6 _ 0.589 _ 0.460
0.52 0.511 0.520 0.512 0.508
0.5 _ O.5 0.518
0.4 _ 0.398 _ 0.572
0.3 0.300 _ 0.799

HAO code differ slightly from the published results, _° although the
parameters in the HAO algorithm are the same. It is likely that the
published results were generated with an earlier version of the HAO
code. The qualitative trends remain the same.)

InRef.I0,thecontrollabilitycanonicalform isassessedaspoorly

conditionedbecause of the small minimum step size.However,
Table 1 indicates that the static gain formulation in H2HOM yields
a substantial improvement in conditioning along the homotopy path
over the HAO implementation of the canonical compensator. Al-
though the static gain formulation is better conditioned for this ex-
ample problem, this may not be the case in general. An even more
significant benefit of this formulation is the straightforward exten-
sion to the H= and mixed H2/H= problems.

Mixed HT./Hoo Case
One-Input/Two-Output C,,ve

The seminal paper 4 dealing with mixed H2/Hoo design addressed
the case where w = Wp in Eq. (37) with results from the four disk
problem given for the full-order case. In this section, the one-
input/two-output case will be repeated with the FOCUS algorithm as
well as a two-input/two-output case with full- and fixed-order com-
pensators to demonstrate the capabilities of the homotopy algorithm.

Table 2 presents a comparison of the results from the FOCUS
algorithm and the results published in Ref. 4. In Table 2, the BH
subscript indicates results from Bernstein and HaddacP and the F

subscript indicates results from FOCUS. Gaps in the columns of
Table 2 denoted BH correspond to values of y for which results

were not published. The absence of data generated by FOCUS for
y = 2 and 1.5 is due to the fact that 7/is larger than the maximum
oo norm, as described in the next section. A key distinction between
the formulations of the mixed H2/H_ optimization problem used
in this paper and that of Ref. 4 is that whereas their formulation
minimizes an overbound on the//2 norm, the formulation utilized
in FOCUS minimizes the actual/'/2 norm. Consequently, as shown
in Fig. 2, the FOCUS algorithm results in smaller/'/2 norms for a
given 7/with the gap in the oo norm overbound smaller than the

Ref. 4 results in the meaningful regionfor 7/, as described inthe

next section. Whereas X = 0.52 was the smallest ?, value reported
in Ref. 4, 7/values of 0.5, 0.4, and 0.3 are utilized with FOCUS, as

indicated in Table 2. This example also demonstrates the synthesis
of fixed-order mixed controllers with singular Ho_ constraints. In
practice, compensators representing the extreme values of y or _.

typically will not be used because either performance or robustness
would be severely diminished. A compromise value in the elbow
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0.6

_ 0.55
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0._'=
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1.4

of Fig. 2 typically would be chosen. Although the FOCUS results
in Table 2 are not significantly better than the results of Ref. 4, the

example demonstrates that the FOCUS code performs satisfactorily
and lessens the gap between the overbound and the oo norm.

Discussion

This example serves to illustrate some interesting features of the
mixed H2/H_ formulation implemented in FOCUS, as well as dis-
tinctions from other formulations. The formulation implemented in
FOCUS is a method for generating suboptimal H_ controllers of
fixed order that are subject to an//2 constraint. The cost functional
for the mixed H2/Hoo problem can be written as

Jmtx= J_ + _.J2 (102)

where

Jo_= tr{Q_T} (i03)

= x C e, } (lo4)

subject to the corresponding Riccati and Lyalmnov equations. The

resulting Lagrangian, also given by Eq. (48), is

f.=tr { Q=BBr +(iT Qoo + Qooi +_r _ ÷ y-2Q=_T Q_)L

+_xe_ep + (ix + xi _ + _,_)L,} (1o5)

Minimization of Joo results in an Hoo controller with an upper

bound on the co norm given by the oo norm of the//2 controller (as

7/ ---* 00, the//2 compensator for Tzw is recovered by minimizing

Joo). By successively lowering gamma, the minimum Ho_ norm
controller for T:w is obtained. Minimization of ./2 results in the

optimal/'/2 compensator for T:p,o. Thus, when nonzero k is used in

J_t_, the H® cost functional imposes an additional constraint on the

/'/2 norm of T_pw, and for large X, the necessary conditions for the
mixed problem yield the simultaneous solution of two/'/2 problems.

By increasing the//2 weight, _., for a fixed 7/, ][Twwl[2 is reduced

while IIT_,I[® approaches the gamma overbound. At that point, the

minimum H 2 controllerforT_,0suchthatIIT,_[I®< 7/isobtained.
For thisexample problem, the optimal /'/2controllerfor T_

resultsin llW,,ll_= 1.392and llT_lh = 0.3786.The y values

largerthan 1.392arenot meaningful forour formulationbecause

the optimal//2compensator forT:pu,satisfiesthe y,constrainton
llW_.ll_.Inthatcase,theH_ normconstraintisinactiveinthe
mixed norm optimization.However, sincethe Ref.4 formulation

seeksto minimize the/'/2norm overbound,itispossiblefortheir
formulationtogeneratemeaningfulsolutionsfor7/> I•392.When

usingFOCUS, thefirststepshouldbe toestablishan upperbound on

7/bycomputing IIT_ Ilooresultingfrom theoptimal/-/2compensator

for r_..
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Table 3 Comparison of two-input/two-output results

Y IIT_wli_.s IIT_pwp[12.s IIT_II_.4 I[Tzpwp[[2.4

2 -- 2 0.421

1.5 1.304 0.446 1.483 0.437
1.0 1.000 0.500 1.000 0.496

0.9 0.900 0.529 0.900 0.532

0.8 0.789 0.560 0.800 0.587

0.7 0.694 0.652 0.700 0.640

0.6 0.597 0.799 0.600 0.952

0.5 0.500 3.842 0.500 1.180

0.4 0.400 8.281
0.3 0.300 24.84

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

%1,

[ x FullOlder(8)

o FixedOrder(4)

H-Ildinity Cos_

H_ vs H2 cost for MIMO example.Fig. 3

Two-Input/Two-Output Reduced-Order Case

To demonstrate the capability of the homotopy algorithm to syn-

thesize fixed-order compensators for the two-input/two-output case,

the four disk example was modified by creating a fictitious distur-

bance input for the Hop minimization subproblem. The new coef-

ficient matrices are given by B] = 2 x Bp and D21 = 2 × D2p.

Additionally, a small penalty was placed on the control in the Hop

subproblem (D12 = [0 0.001]r). Table 3 shows the results of the

comparison for the full- and fixed-order two-input/two-output case.

Figure 3 plots the intcrraediate values of Table 3 and illustrates the

cost trade (extreme values are removed to preserve scale). In Table 3,

the subscript 8 indicates the full-order design and the subscript 4

indicates the fixed-order design. In general, full-order compensator

synthesis is more taxing on the numerical algorithm due to the larger

number of parameters to be optimized, which is evident in both

Table 3 and Fig. 3. The fixed-order design is able to achieve smaller

//2 norms at the smaller y values. Also, the oo norms for the larger

values of y are closer to the overbound with the fixed-order designs.

The reduced number of parameters to be optimized results in more

accurate solution of the minimization problem. The closeness oftbe

H2/Hoo cost curves in Fig. 3 indicates that the fourth-order compen-

sator closely approximates the performance/robustness tradeoff of

an eighth-order compensator except at the low end of the attainable

Ho_ norm values. The infinity norm of Tzw resulting from dosing the

loop with the full-order optimal//2 controller for Tzpwe is 1.845, so

that the full-order ease with y = 2 was not a meaningful solution.

However, a meaningful solution for y = 2 was achieved with the

fixed-order compensator.

Conclusions

A homotopy algorithm is developed to synthesize fixed-order

//2, H_, and mixed H2/H_ compensators employing a controller

canonical form, and a representative flexible structure is used to

demonstrate the numerical results. Fixed-order mixed Hz/Hoo com-

pensators are synthesized for the case of one disturbance input set

and two outputs sets, as well as the case of two disturbance input

sets, two output sets. These numerical results indicate that for the

example presented, the static output feedback formulation using the

controller canonical form is a more efficient means of synthesiz-

ing dynamic compensators than employing a general compensator

architecture. The synthesized reduced-order compensators perform

well when compared to full-order controllers. The fixed-order mixed

H2/Hoo formulation is shown to offer improved performance over

standard Hop compensators by minimizing the/-/2 norm while re-

moving (or reducing) the gap between the actual Hop norm and the

gamma overbound.
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